Dwija Parikh

+1 (713) 715-9407

dwija@uw.edu | linkedin.com/in/dwija-parikh | dwijap.github.io

EDUCATION

University of Washington

M.S. Computational Linguistics Seattle, WA

Coursework: Shallow & Deep Processing for NLP, Machine Translation, Syntax Engineering, Phonetics

University of Houston

B.S. Computer Science, B.S. Mathematics (Data Science Option)

Coursework: Linguistics, Advanced NLP, Data Structures & Algorithms

Houston, TX

TECHNICAL SKILLS

Programming Languages: Python, R, C/C++

Tools & Frameworks: PyTorch, Tensorflow, Huggingface, Scikit-learn, Pandas, NLTK, SpaCy, Praat

Data Operations: SQL, MongoDB, NoSQL, Tableau **Development:** AWS, CUDA, Docker, CI/CD, Git

Languages: English, Hindi, Gujarati

EXPERIENCE

NVIDIA
NLP Engineer
Remote

• Built and optimized human-in-the-loop **annotation data pipelines** for diverse models like **ASR/TTS (Riva)**, **LLMs (NeMo)**, **and vision language models (VILA, Cosmos)** supporting **1k+ members**, ensuring scalability and high-quality data preparation

- Collaborated cross-functionally with research and product teams to evaluate, refine, and enhance multimodal models and products aligning technical deliverables with customer needs across 50+ projects
- Designed and implemented **synthetic data generation techniques** for Retrieval-Augmented Generation (RAG) in the NeMo LLM service, leveraging both rule-based systems and LLMs to enhance downstream performance
- Provided **linguistic expertise for dataset evaluation**, leveraging customized **agreement metrics** and **quality scores** tailored to specific use cases, enabling data-driven decision-making for stakeholders

Hewlett Packard Data Science Institute

Jun 2021 - Aug 2021

Houston, TX

- Developed data pipelines and workflows to process over 1 million data points in healthcare insurance claims, optimizing ovarian and prostrate cancer treatment pathways for over 65k patients
- Applied unsupervised learning to uncover trends in patient pathways using Directed Acyclic Graphs (DAGs), community detection, and predictive link analysis for treatment visualization

PROJECTS

Data Science Intern

Product Recommender System Using Graph Neural Networks

- Developed an **ontology based** product recommendation system leveraging **Graph Neural Networks (GNNs)** to enhance recommendation accuracy, achieving a 72% accuracy in predictive performance
- Integrated **knowledge graphs** to enrich product data representation, enabling better semantic understanding and enhancing downstream machine learning task
- Constructed a comprehensive ontology that captured **domain-specific knowledge** and relationships between products, enabling an understanding of user preferences and item characteristics thereby improving customer engagement

PUBLICATIONS

Targeted Multilingual Adaptation for Low-resource Language Families, EMNLP Findings 2024

C.M. Downey, Terra Blevins, Dhwani Serai, Dwija Parikh, Shane Steinert-Threlkeld

- Adapted XLM-R for **low-resource language families**, improving performance and accuracy on POS tagging & dependency parsing through targeted multilingual training strategies and evaluated hyperparameters to enhance performance across **15+ languages**
- Identified key hyperparameters through regression analysis, establishing best practices for up-sampling low-resource languages without compromising high-resource language performance

Normalization and Back-transliteration for Code-Switched Text, CALCS @ NAACL 2021

Dwija Parikh and Thamar Solorio

- Developed a preprocessing module specifically designed for code-switched data, utilizing a hybrid approach that combined rulebased phonemic transcription methods with machine learning techniques, including a seq2seq model employing LSTM networks, resulting in an accuracy rate of 78.6% and 0.8 BLEU score
- Engineered a novel grapheme-to-phoneme (G2P) conversion technique specifically tailored for Romanized Hindi data, enhancing the processing and analysis of code-switched text in social media contexts